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Abstract

With the advances in Natural Language Process-
ing techniques, there is a growing interest in
story comprehension and generation. This paper
presents a graph-based approach to build scene
embeddings, to understand narrative in movie
scripts. Our method segments a script into scenes
and extracts character actions and dialogues to
form a story graph. The graph is then used for
learning the scene representation leveraging the
Metapath2Vec algorithm. For evaluation, we de-
sign classification tasks to test whether a scene
embedding can represent the scene’s contex-
tual information. The results of the evaluation
demonstrate that the proposed scene embeddings
are effective in predicting the presence of char-
acters and scene orderings.

Keywords— Story, narrative, movie script, scene em-
bedding, graph-based approach, context awarenesss,
deep learning, NLP

I. INTRODUCTION

With the advances in Natural Language Processing
techniques, there is a growing interest in story comprehen-
sion and generation. While stories can be conveyed in di-
verse formats, such as books and cartoons, movies and TV
shows are the most popular media [15], with a multi-billion
dollar market. Therefore, it becomes more important to un-
derstand film scripts.

Film scripts constitute a valuable corpus for investi-
gating narrative and various NLP research topics. Prior
research includes prediction of getting nominated for an
award [4] and the detection of a bias in dialogue [1, 23].
In [10], screenplays are used to classify movies in terms of
genre, mood, plot types, attitude, style, etc.

A screenplay consists of multiple scenes [3]. A scene
can be viewed as a short story in itself and accounts for
series of action and events that occur in continuous time
and space [15]. Scene unit information can be useful to
summarize a script by identifying importance scene chains
[9, 17]. [19] present a method to identify scenes with a

Fig. 1. An illustration of scene embeddings. The scenes close to
each other in an embedding space share a context. For instance,
scenes 50 and 51 contain the same character in a car, as indicated
with the highlighted words.

turning point, where the plot unfolds in a different direc-
tion.

While a number of previous works have utilized scenes
for narrative generation and comprehension, little has been
researched to understand them in terms of representation.
To bridge the gap, this paper presents a graph-based ap-
proach to build scene embeddings, to understand narra-
tive in movie scripts. Figure i. illustrates the scene embed-
ding vectors with their corresponding scenes in the screen-
play. To build scene embeddings, we first construct a graph
which contains Scene, Character, Act, and Main Act nodes
we define for this study. While the Act and Main Act
nodes refer to sentences in a scene, the Scene and Charac-
ter nodes represent the concepts of scenes and characters.
Thus, we utilize a sentence embedding when initializing
the (Main) Act node embeddings.

On completion of the story graph, the node embeddings
are learned using Metapath2Vec, a 2-step representation
learning algorithm [6]. The first step utilizes random walks
following the predefined meta paths to generate training
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data from the story graph. The second step learns an em-
bedding vector for each node in the story graph, using the
Word2Vec algorithm [16] with the training data built in the
first step.

We create the scene embeddings and examine whether
they represent scene-relevant information. We design three
tasks to check if a scene embedding can represent the
presence of main characters in the scene, scene ordering,
and the scene’s contextual information. For evaluation, we
utilize the movie scripts from the two existing datasets:
ScriptBase [9] and TRIPOD [19].

The contributions this paper makes are as follows:

• We propose a novel embedding method to represent
scenes, leveraging a story graph and a representation
learning algorithm. To the best of our knowledge, this
work is the first attempt to learn representations fo-
cusing on scenes in a movie script in an unsupervised
manner.

• We design three tasks and build datasets from exist-
ing data to evaluate the effectiveness of the proposed
scene embedding method.

• We carried out evaluations and the results indicate
that our proposed embedding can effectively repre-
sent scenes compared with simple baseline models.

The rest of this paper is organized as follows. Section
ii. summarizes related works. Section iii. describes our
method to create scene embeddings. Section iv. presents
the experiments and the results. Section ?? discusses the
findings obtained from qualitative analysis. Finally, Sec-
tion v. provides conclusive remarks and future works.

II. RELATED WORK

In this section, we briefly summarize prior studies on
movie script and narrative analysis using a graph structure.

A. Analysis of Movie Scripts

Several datasets provide movie scripts [9, 10]. The
ScriptBase dataset [9] collects 1,276 scripts from web
resources such as IMSDb1. In addition to the scripts,
the dataset offers metadata such as keywords and sum-
maries extracted from IMDB2 and Wikipedia. The TRI-
POD dataset contains movie scripts and synopses anno-
tated with five turning points where the plot of the movie
changes its direction [19].

Movie scripts can serve as excellent resources for NLP
research. The dialogues in scripts are used to inspect bias
in conversation [23, 1, 29, 22]. In [25], the BART model

1https://imsdb.com/, one of the most famous sites that releases
movie scripts

2https://www.imdb.com/, online site giving information of the
movies, games, and TV shows

is used to identify seven biases, including age and gender,
found in the dialogues of 35 films. [22] applies a connec-
tion frame with power and agency relationships to the nar-
ration and dialogue parts of the movie script to analyze
gender bias. [4] analyzes movie scripts at the word-level
to predict if the movies would get nominated for awards
using tf-idf representation and the SVM classification al-
gorithm. The classification performance was F1 score of
62.35% when using the ScriptBase dataset.

However, only a few studies analyze screenplays to un-
derstand narrative in movies. Scripts have complex for-
mats, including action statements, character dialogues,
slug lines, and camera cut scene directions [2]. Scenes can
be regarded as the basic unit of a script. papalampidi-etal-
2019-movie presents a neural approach to detecting turn-
ing points in the scenes, and its follow-up study summa-
rizes a movie by extracting important scenes using the
turning points [18]. [17] aligns sentences in a summary
with their corresponding scenes in the script based on their
lexical and semantic similarities.

As of our knowledge, [2] is the first work that presents
scene embeddings. They embed the characters, the sen-
tences of dialogues, and actions and combine them to cre-
ate scene embeddings. These scene embeddings are then
combined to build the script embeddings, which are used
for various classification tasks such as predicting genre,
mood, etc. Their embedding method leverages supervised
learning algorithms which require labels. Moreover, their
scene embeddings serve as an intermediate representation
for building script embeddings.

Unlike previous studies, our work focuses on scenes, es-
sential narrative units for analyzing movie scripts. Our goal
is to learn scene embeddings in an unsupervised manner to
understand narrative in movies.

B. Narrative Comprehension Using Graphs

Graphs have been used for narrative analysis and com-
prehension. Some prior studies leverage graphs to ver-
ify narrative analysis theories [13, 7, 24]. For instance,
[13] conduct experiments with 19th-century English nov-
els. They build story networks with characters as nodes and
interactions between characters as edges, to find the differ-
ence between urban and rural novels. Graphs are used for
capturing the flow of information found in a story [24] and
character detection [27].

While the previous works make use of the graph’s topo-
logical properties, recent works [9, 12] leverage graph
structure for representation learning and summarization.
[9] uses a graph-based model to find the optimal chain of
scenes for generating summaries. They create a bipartite
graph consisting of characters and scenes, and the degree
of connection between the nodes is approximated using the
random walk with restart strategy [26].

In [12], graphs are used to detect the presence of char-
acters in novels. They extract character-related information
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Fig. 2. An excerpt from the movie ‘Ocean Eleven’. A scene con-
tains the character’s actions and dialogues, which are highlighted
and used for constructing its story graph.

Fig. 3. A story graph which contains scene, character, and act
nodes. The scene is linked to act and act is linked to character. The
characters are also connected to acts in other scenes. Therefore,
the character node creates a connection between different scenes.

from the sentences where characters appear. This informa-
tion is used to form a character graph. Then, the DeepWalk
method [20] is applied to the graph to learn the charac-
ter embeddings. This method is suitable for homogeneous
graphs, but not applicable to heterogeneous graphs with
various node types.

In this paper, we construct a heterogeneous graph con-
sisting of various node types representing story elements.
Hence, we use the Metapath2Vec algorithm, suitable for
dealing with heterogeneous graphs to learn scene embed-
dings.

III. METHODOLOGY

This section describes the proposed method to convert
the textual description of a scene into an embedding vector
via two phases: story graph construction and embedding.

A. STORY GRAPH CONSTRUCTION

First, we preprocess the script to remove text within
parentheses since they typically denote acting directions.
Next, we extract scenes using the headings ‘INT(interior)’
and ‘EXT(exterior)’, denoting scene transitions following
[17]. Then, we extract character-related information from
the scenes–actions and dialogues of characters, as shown
in the highlighted parts in Figure A..

We use this character-related information to construct a
story graph. Figure A. exemplifies a graph which is com-

Fig. 4. A 16-dimension tag is attached only to Main Act. We use
sinusoidal values to assign different tags to distinguish different
scenes.

posed of three different nodes: scene, act, and character. A
scene node represents a scene, so a graph contains as many
scene nodes as the number of scenes in the script. An act
node shows a character’s action and dialogue. The action
and dialogue parts obtained in the preprocessing stage are
separated into sentences. And each sentence is represented
as an act node. A character node identifies a character ap-
pearing in a scene. While a particular character can appear
in multiple scenes, a story graph contains one character
node for each character that is in a script. Hence, a story
graph contains as many character nodes as the number of
characters in the story.

There are two types of edges: a scene-act edge, and
an act-character edge. A scene-act edge connects a scene
node and an act node, meaning that the act appears in the
scene. An act-character edge denotes a relationship be-
tween an act and its associated character. When an act rep-
resents a dialogue (including voice over), the associated
character is the speaker. When an act represents an action,
the associated character is the character whose names ap-
pear in the sentence.

B. GRAPH TO EMBEDDING

We create scene embeddings from the story graph using
the Metapath2Vec method [6]. The Metapath2Vec method
samples paths on a graph. These paths are used as input
samples for training the Word2Vec [16] Skip-gram model
to create node embeddings. The process of sampling the
paths is performed randomly, with setting the node types
of the path. This path is called a meta path. For example,
when the path type ‘Act - Character - Act’ is set, the sen-
tences of the nodes constituting the path ‘act1-character2-
act3’ can be sampled for training the model.

mckee1997story maintains that changes in characters
lead to the development of a story, emphasizing the role of
characters in narrative. Therefore, all the meta paths con-
tain the Character node type. When training the Word2Vec
model, we leverage the sentence embeddings using Sen-
tence Transformer [21] to initialize the embedding of the
Act nodes, which are represented as sentences. We believe
that using this sentence embedding helps capture the con-
textual information among actions and dialogues. The ini-
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Table 1. The number of movies, scenes and average of scenes of
the datasets.

# Movies # Scenes Avg Scenes
ScriptBase 1,200 166,611 138.8
TRIPOD 15 2075 138.3

tial embeddings of the Scene and the Character nodes are
randomly set.

Finally, we define ‘Main Act node’ to mark important
Act nodes that have high similarities with other Act nodes.
We compute the importance of a node based on similarity
as follows. When a scene contains N sentences, we calcu-
late the cosine similarity of the sentence embeddings be-
tween each of these sentences and one of the other N − 1
sentences. When the similarity between two sentences ex-
ceeds a predefined threshold value, we change their corre-
sponding node types from ‘Act’ to ‘Main Act’.

By adding these meta paths, we expect that the Main
Act can contribute learning the embeddings of the Charac-
ter nodes and Scene nodes of importance. We add an extra
tag to the Main Act node embedding (see Figure A.) to
distinguish them from non-Main Act nodes. The tag con-
sists of 16 dimensions of sinusoidal values [28], so that the
Main Acts from different scenes can have distinct values.

IV. EXPERIMENTS

A. EXPERIMENTAL SETTINGS

1) DATASETFor evaluation, we use two datasets: the
ScriptBase dataset [9] for creating the scene embedding
and the TRIPOD dataset [19] for evaluating our method for
classification tasks. The ScriptBase dataset contains 1,276
movie scripts with meta data such as summaries, genres,
and loglines. We selected 1,200 movies that have clearly
divided scenes (see table 1. The TRIPOD dataset [19] con-
tains 99 screenplays and synopses; 84 screenplays are the
train set and 15 are the test set. Five turning points are used
to separate six stages: setup, new situation, progress, com-
plications and higher stakes, the final push, and aftermath
[11]. While the test set has both the screenplays and syn-
opses annotated with these turning points, the training set
has only the synopses annotated with the turning points.
Hence, we selected 15 scripts from the test set for our eval-
uation. Each scene is annotated with one of the six stages.
Table 2 displays the number of scenes for individual stages.

2) MODEL SETTINGSWe set the hyperparameters for
training the Metapath2Vec model. The walk length denotes
the maximum length of a random walk. We set the walk
length to 10 for the meta paths containing both the Charac-
ter nodes and the Scene nodes. Otherwise, the walk length
is set to 5. And in the random walks step, we can set the
random walks per root node value, and we use 1 as the de-
fault. Exceptionally, considering that the number of char-
acter nodes is fewer than that of other nodes, it is set to 30

only in the path starting with a Character node. Word2Vec
[16], used to learn the path, has 384 dimensions, and the
window size is 3.

Sentence Transformer is used in the process of embed-
ding action. We use the sentence-transformers/multi-qa-
MiniLM-L6-cos-v1 pre-trained model3, which has 384 di-
mensions. The model was learned for semantic search.

We conducted experiments to investigate the effective-
ness of scene embeddings using classification tasks. For
building a classification model, we leverage the BERT
model [5] which has 384 dimensions and consists of 6 lay-
ers. We give scene embeddings as input to the model and
use Tanh as the activation function of the last layer.

B. BASELINE MODELS

As of our knowledge, no attempts have been made
to create scene embeddings in an unsupervised manner.
An alternative baseline is to employ the scene embedding
method using supervised algorithms [2], but their code is
not accessible. For comparison, we create three baseline
models as described below.

1) DOC2VECFirst, we use doc2vec model [14] as a
baseline. Doc2vec can obtain document embedding similar
to word2vec, recognizing a scene as a document. For each
scene, its text is given to the doc2vec model to obtain the
output as the scene embedding vector.

2) AVERAGING EMBEDDINGWhen we create a
story graph, the embedding of individual Act node is ob-
tained using the Sentence Transformer. We use the average
of the embedding vectors of the Act nodes that make up a
scene as its scene embedding.

3) SUMMARIZATIONSummarizing a scene would
generate a concise text that contains the most important in-
formation from the scene. We obtain a summary using an
abstractive summarization model, since a scene includes
dialogues and actions. DialogLM [30] is suitable for sum-
marizing a long dialogue, and we use the DialogLED-
large-51204 pre-trained model. We set the minimum length
of the output statement to 20, the number of beam value to
3, and the no repeat ngram size to 2. Any symbols or num-
bers in the generated output sentences are removed. These
summary sentences are given to the Sentence Transformer
to generate its scene embedding.

C. EVALUATION TASKS

This section describes the tests we design to evaluate the
effectiveness of the scene representation.

3Available at https://huggingface.co/sentence-
transformers/multi-qa-MiniLM-L6-cos-v1

4Available at https://huggingface.co/MingZhong/DialogLED-
large-5120

4



Table 2. The total number of scenes in each stage of the TRIPOD
screenplays.

# of scenes
Stage 1 (Setup) 293
Stage 2 (New situation) 462
Stage 3 (Progress) 562
Stage 4 (Complications and higher stakes) 542
Stage 5 (Final push) 284
Stage 6 (Aftermath) 90

Table 3. The number of samples in the train, validation, and test
sets for the character identification and the scene ordering tasks.
Thes Main Character identification task predicts whether a par-
ticular character appears in a given scene. Each dataset has a one-
to-one ratio of appearance/non-appearance scenes. The Scene Or-
dering task predicts if a sequence of scenes is in forward or back-
ward order. Each dataset consists of a one-to-one ratio of for-
ward/backward labeled scene sequences

Train Validation Test
1st Main Character 40,000 8,000 8,000
2nd Main Character 40,000 8,000 8,000
3rd Main Character 40,000 8,000 8,000

Scene Ordering 2,000 200 200

1) MAIN CHARACTER IDENTIFICATIONThe first
task checks if the embedding can determine whether the
main characters are included in the scene or not. We select
three characters that appear most frequently in the script as
the main characters. We run a classification task for each
character to determine whether the particular character is
included in a given scene or not. We build the evaluation
dataset using the ScriptBase dataset, We randomly extract
56,000 scenes from the 1,200 scripts divided into train, val-
idation, and test sets as shown in Table 3.

2) SCENE ORDERINGThe second task aims to test if
the scene embedding can represent the story progression.
The task is to classify if the given scenes are in forward or
backward order. We build the evaluation dataset using the
1,200 scripts of the ScriptBase dataset. The data include
1,200 samples that arrange scenes in forward direction (as
in the original script) and 1,200 samples in backward di-
rection that we prepared. Table 3 shows the count of data
samples for the train, valid, and test sets.

3) SCENE COHESIONWe design a scene cohesion
test that checks if the spatial coordinates of two different
scene embeddings are close to each other when they have
similar contexts. We expect that the two scenes belonging
to an identical stage would have similar contexts. In that
case, their scene representation vectors would be located
closely on the embedding space. When a scene is given, we
look for its closest scene based on their embedding vectors.
Then, a classification model determines if the given scene
and its closest scene are in the same stage. We build evalu-
ation data for this task using the 15 screenplays of the TRI-
POD test set. We segment individual scripts into six stages
using the five turning points annotated in the original data.

Table 2 shows the number of scenes for each stage.

4) SCENE COHESION

D. RESULTS

This section reports and discusses the results of our
evaluation.

1) CHARACTER IDENTIFICATIONTable 4 shows
the results of evaluating our scene embedding models for
character identification and scene ordering tasks. Our pro-
posed embedding model outperforms across all the tasks
compared with the three baselines that employ Doc2vec,
Averaging embedding, and summarization strategies. This
indicates that our proposed embedding representation
learned using the story graph and the Metapath2Vec learn-
ing method can effectively capture information of a scene.

We also experimented with the edge2vec method [8]
which learns the scene representation using the same story
graph and a different random walk strategy, and the result
shows that its performance is lower than that of the Metap-
ath2Vec method. The edge2vec method forms a transition
matrix between different edge types and performs random
walks based on it, which increases the probability of select-
ing the same node type as the next step. This strategy leads
Edge2vec to set the path to visit the same node type, we
believe that the data samples to learn Scene nodes can be
relatively insufficient compared with Metapath2Vec where
we can set the meta path to focus on learning the Scene
nodes intensively.

We ran an ablation study to investigate the effect of us-
ing the Main Act node type. In Table 4, Metapath2Vec de-
notes the proposed embedding method using the Main Act
nodes with a tag attached to their node representations (see
Figure A.). We tested two cases: when tags are not used
for the Main Act node representation (denoted as ‘Metap-
ath2Vec - Tag’) and when the Main Act node types are not
used (denoted as ‘Metapath2Vec - Main Act - Tag’ in the
table). The latter case means that the Main Act nodes are
regarded as Act nodes, and accordingly the four meta paths
that contain Main Act nodes are not used. Although these
cases score the highest for the 2nd and 3rd main character
detection tasks, averaging the performance scores of de-
tecting the three main characters shows that Metapath2Vec
using the Main Act node types and tagging performs the
best, however, overall, the difference is not significant.

2) SCENE ORDERINGThe result of classifying scene
ordering shows that Metapath2Vec using the Main Act
node types and tagging performs the best, reaching 0.936
in AuC and 0.845 in accuracy (see Table 4). The ablation
study shows that the accuracy decreases by 0.085 when the
tag is not used for the Main Act node representation. We
believe that the tag can serve as positional encoding since
it employs a sinusoidal value. For this task, the averag-
ing embedding baseline performs as well as Metapath2Vec
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Table 4. Experimental result of the the character identification and the scene ordering test. 1st, 2nd, and 3rd are in the order of the
main characters that frequently appear in the script. Avg means the average of the performance scores for predicting the 1st, 2nd and
3rd characters. AUC refers to the bottom area of the ROC curve. The ROC curve is drawn by changing the threshold the final sigmoid
value to determining the labels.

1st main character 2nd main character 3rd main character Avg Scene Ordering
AUC accuracy AUC accuracy AUC accuracy AUC accuracy AUC accuracy

Doc2vec 0.4649 0.4990 0.4617 0.4998 0.4472 0.4999 0.4579 0.4996 0.4998 0.5000
Averaging Embedding 0.6517 0.6060 0.6787 0.6054 0.6129 0.5777 0.6478 0.5964 0.8228 0.7550

Summarization 0.6006 0.5719 0.6505 0.5811 0.5990 0.5674 0.6167 0.5735 0.6711 0.6250
Metapath2Vec 0.6958 0.6492 0.6898 0.6396 0.615 0.5844 0.6669 0.6234 0.9362 0.8450

Edge2vec 0.6522 0.6004 0.6721 0.6276 0.6016 0.5746 0.6420 0.6009 0.8575 0.7850
Metapath2Vec - Tag 0.6738 0.6189 0.7006 0.6430 0.6203 0.5882 0.6649 0.6167 0.8364 0.7600

Metapath2Vec - Main Act - Tag 0.6758 0.6223 0.6852 0.6263 0.6375 0.6020 0.6662 0.6169 0.8107 0.7150

Table 5. Experimental result of scene cohesion test. From top to bottom, the number of neighbors is 1, 3, and 5.
# of neighbor = 1 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Average

Random 0.1322 0.2089 0.2593 0.2466 0.1164 0.0361 0.1667
Doc2vec 0.3897 0.4312 0.5065 0.5031 0.3493 0.1784 0.4380

Averaging Embedding 0.3808 0.4612 0.4961 0.5423 0.3596 0.2394 0.4524
Summarization 0.6247 0.4152 0.3881 0.4679 0.2471 0.0364 0.4507
Metapath2Vec 04269 0.4490 0.5686 0.5258 0.3362 0.3521 0.4729

Edge2vec 0.4000 0.4320 0.5509 0.5052 0.3100 0.1549 0.4435
Metapath2Vec - Tag 0.4154 0.4660 0.5137 0.5505 0.3188 0.1549 0.4579

Metapath2Vec - Main Act - Tag 0.3654 0.4272 0.5157 0.5031 0.3712 0.2676 0.4385

# of neighbor = 3 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Average
Random 0.3464 0.5059 0.5936 0.5723 0.3102 0.1044 0.4213
Doc2vec 0.6731 0.7427 0.8255 0.7629 0.6681 0.4085 0.7342

Averaging Embedding 0.5740 0.7692 0.8488 0.8085 0.5972 0.4918 0.7320
Summarization 0.5132 0.7008 0.7676 0.8421 0.6505 0.2333 0.7082
Metapath2Vec 0.7154 0.7524 0.7980 0.7876 0.6681 0.5634 0.7442

Edge2vec 0.7154 0.7500 0.7667 0.7649 0.6900 0.4789 0.7276
Metapath2Vec - Tag 0.6769 0.7718 0.7745 0.8309 0.6114 0.4085 0.7348

Metapath2Vec - Main Act - Tag 0.7154 0.7209 0.7843 0.7794 0.6507 0.4788 0.7292

# of neighbor = 5 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Average
Random 0.5078 0.6912 0.7770 0.7572 0.4614 0.1679 0.5981
Doc2vec 0.7923 0.8447 0.9059 0.8784 0.8079 0.5070 0.8416

Averaging Embedding 0.7911 0.8636 0.9298 0.8845 0.7029 0.6230 0.8422
Summarization 0.6520 0.8540 0.8743 0.8975 0.7866 0.4521 0.8151
Metapath2Vec 0.8192 0.8471 0.8471 0.9113 0.8122 0.6338 0.8577

Edge2vec 0.8308 0.8883 0.8745 0.8598 0.7991 0.5634 0.8439
Metapath2Vec - Tag 0.8000 0.8592 0.8686 0.9113 0.7686 0.5493 0.8416

Metapath2Vec - Main Act - Tag 0.8346 0.8422 0.8824 0.8927 0.7860 0.5493 0.8444

without tagging. We also observe that the accuracy drops
by 0.13 when the Main Act node type is not used. This
suggests that the use of Main Act node type enhances the
performance to capture the context between scenes.

Table 5 shows our results for the scene cohesion test,
setting the number of scene neighbors as 1, 3, and 5, cho-
sen by the Mahalanobis distance. We use the hit rate to
measure the performance, the probability that the given
scene and one of its neighbors are in the same stage. For

the baselines, we add the ‘Random’ scheme which dis-
tributes embeddings randomly. The results show that the
Metapath2Vec model using the Main Act node type outper-
forms baselines in all sectors. We also observe that the em-
beddings trained by the edge2vec method performs poor,
scoring lower than some baselines. This indicates that the
Metapath2Vec method is effective in learning the scene
embeddings.

The ablation study also shows that the performance
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tends to increase when tagging and Main Act node are
used, although the difference is not significant. Therefore,
we can conclude that the use of Main Act node type helps
capture the scene’s contextual information.

V. CONCLUSION

In this paper, we present a scene embedding represen-
tation using a story graph and Metapath2Vec, a 2-step rep-
resentation learning algorithm. The story graph is hetero-
geneous, consisting of Scene, Character, and (Main) Act
nodes. The Metapath2Vec algorithm creates a corpus via
random walks on the graph. Then, the corpus is used to
learn the node embeddings.

For evaluation, we design three tasks and build data
from existing datasets to test if the embeddings can rep-
resent scenes for understanding a narrative. The results of
our experiments show that our embedding method outper-
forms the baseline models, demonstrating its effectiveness
in character identification and scene ordering detection.

As of our knowledge, this work is the first attempt to
learn scene embeddings in an unsupervised manner to un-
derstand narrative in movies. In the future, we will work on
enhancing the embedding method to learn essential narra-
tive elements such as conflict.
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SUMMARY OF THIS PAPER

A. Problem Setup

Using the unsupervised method, we created a scene embedding that exists in the movie script for analyze movie
script.

B. Novelty

We propose a novel embedding method to represent scenes, leveraging a story graph and a representation learn-
ing algorithm. To the best of our knowledge, this work is the first attempt to learn representations focusing on
scenes in a movie script in an unsupervised manner.

C. Algorithms

Our method segments a script into scenes and extracts character actions and dialogues to form a story graph.
The graph is then used for learning the scene representation leveraging the Metapath2Vec algorithm.

D. Experiments

We design three tasks to check if a scene embedding can represent the presence of main characters in the scene,
scene ordering, and the scene’s contextual information.
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